Some quadratic equations in the free group of rank 2
نویسندگان
چکیده
For a given quadratic equation with any number of unknowns in any free group F , with right-hand side an arbitrary element of F , an algorithm for solving the problem of the existence of a solution was given by Culler [8] using a surface method and generalizing a result of Wicks [46]. Based on different techniques, the problem has been studied by the authors [11; 12] for parametric families of quadratic equations arising from continuous maps between closed surfaces, with certain conjugation factors as the parameters running through the group F . In particular, for a oneparameter family of quadratic equations in the free group F2 of rank 2, corresponding to maps of absolute degree 2 between closed surfaces of Euler characteristic 0, the problem of the existence of faithful solutions has been solved in terms of the value of the self-intersection index W F2 ! ZŒF2 on the conjugation parameter. The present paper investigates the existence of faithful, or non-faithful, solutions of similar families of quadratic equations corresponding to maps of absolute degree 0. The existence results are proved by constructing solutions. The non-existence results are based on studying two equations in ZŒ and in its quotient Q , respectively, which are derived from the original equation and are easier to work with, where is the fundamental group of the target surface, and Q is the quotient of the abelian group ZŒ n f1g by the system of relations g g 1 , g 2 n f1g . Unknown variables of the first and second derived equations belong to , ZŒ , Q , while the parameters of these equations are the projections of the conjugation parameter to and Q , respectively. In terms of these projections, sufficient conditions for the existence, or non-existence, of solutions of the quadratic equations in F2 are obtained.
منابع مشابه
Haar Matrix Equations for Solving Time-Variant Linear-Quadratic Optimal Control Problems
In this paper, Haar wavelets are performed for solving continuous time-variant linear-quadratic optimal control problems. Firstly, using necessary conditions for optimality, the problem is changed into a two-boundary value problem (TBVP). Next, Haar wavelets are applied for converting the TBVP, as a system of differential equations, in to a system of matrix algebraic equations...
متن کاملOn Silverman's conjecture for a family of elliptic curves
Let $E$ be an elliptic curve over $Bbb{Q}$ with the given Weierstrass equation $ y^2=x^3+ax+b$. If $D$ is a squarefree integer, then let $E^{(D)}$ denote the $D$-quadratic twist of $E$ that is given by $E^{(D)}: y^2=x^3+aD^2x+bD^3$. Let $E^{(D)}(Bbb{Q})$ be the group of $Bbb{Q}$-rational points of $E^{(D)}$. It is conjectured by J. Silverman that there are infinitely many primes $p$ for which $...
متن کاملAnalytical aspects of the interval unilateral quadratic matrix equations and their united solution sets
This paper introduces the emph{interval unilateral quadratic matrix equation}, $IUQe$ and attempts to find various analytical results on its AE-solution sets in which $A,B$ and $CCC$ are known real interval matrices, while $X$ is an unknown matrix. These results are derived from a generalization of some results of Shary. We also give sufficient conditions for non-emptiness of some quasi-solutio...
متن کاملSome extensions of Darbo's theorem and solutions of integral equations of Hammerstein type
In this brief note, using the technique of measures of noncompactness, we give some extensions of Darbo fixed point theorem. Also we prove an existence result for a quadratic integral equation of Hammerstein type on an unbounded interval in two variables which includes several classes of nonlinear integral equations of Hammerstein type. Furthermore, an example is presented to show the effic...
متن کاملQuadratic $alpha$-functional equations
In this paper, we solve the quadratic $alpha$-functional equations $2f(x) + 2f(y) = f(x + y) + alpha^{-2}f(alpha(x-y)); (0.1)$ where $alpha$ is a fixed non-Archimedean number with $alpha^{-2}neq 3$. Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of the quadratic $alpha$-functional equation (0.1) in non-Archimedean Banach spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008